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1. Introduction

Much of the literature that presents analytical or computational solutions to “impact-type” initial

boundary value problems assumes an impact boundary condition in the form of a constant applied

step in stress or velocity, cf.1–3 This simplifying assumption is particularly useful for

characterizing elastic shocks in flyers and targets that arehomogeneous, linear elastic, and

semi-infinite. Here, elastic shocks are defined by stress wave amplitudes that are less than or

equal to the Hugoniot elastic limit, cf., page 248, equation(10.4) of Davison.4 However, for a true

impact into a piezoelectric medium that is multilayered, orinhomogeneous, or possesses other

material discontinuities, the target introduces multiplereflected or scattered waves at the impact

face, so that the history of the stressσ and the particle velocityv at the impact face is generally

time-dependent and cannot be known in advance of the solution to the problem. The use of a

constant stress or velocity boundary condition is an invalid assumption for modeling impact in

such targets, yet its use is widespread in the mechanics literature.

Both Redwood5 and Steutzer6 study the problem of multiply reflected transient waves,

characterized by an infinite set of jump discontinuities, inlinear piezoelectrics subjected to either

a step in stress or voltage, but these boundary conditions are not appropriate for the elastodynamic

impact problem. Other works address shock wave propagationin nonlinear piezoelectric

media,7–9 but the complexity of the material response prohibits an analytical treatment of the

electromechanical coupling in the unstressed region aheadof the shock wave. In this report, we

first outline the linear equations of dynamic piezoelectricity, following closely the development

found in Redwood5 and Steutzer,6 and show how the d’Alembert solution is also applicable to the

study of multiply reflected transient waves in linear piezoelectrics. We then study the “true”

elastodynamic impact problem using a new impact boundary condition originally introduced by

Scheidler and Gazonas;10 the full derivation of the impact boundary condition is based on the

d’Alembert solution of the wave equation, and appears in Gazonas et al.11 Our results are

analytical in the Laplace domain but are numerically inverted to the time domain using a modified

Dubner-Abate-Crump (DAC) algorithm12 designed to mitigate the effects (using Lanczos

σ-factors) of the Gibbs phenomenon (ringing seen in Fourier series representations of jump

discontinuities). One-dimensional (1-D) impact-inducedstress, velocity, and electrical

displacement fields at the center of a lead zirconate titanate (PZT-4) target are compared with

solutions obtained using a finite-difference time-domain (FDTD) code and the commercial finite

element (FE) code, COMSOL Multiphysics.13 The FDTD code was developed by Raymond A
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Wildman and the COMSOL simulations were performed by David AHopkins to compare with

the derived numerical inverse Laplace transform (ILT) solutions. The final value theorem (FVT)

can be used to verify that the asymptotic (long-time) stressand velocity in the piezoelectric target

are independent of the target’s elastic or piezoelectric properties, and only the elastic properties of

the flyer and half-space, a result also proven using the time-domain solutions obtained for purely

elastic targets.11 The FVT is also used to determine a closed-form expression for the asymptotic

displacement current.

2. Plane Waves in Piezoelectric Media

The 1-D constitutive equations for a linear piezoelectric material can be written using the

notation5, 14

σ(x, t) = CD ∂u(x, t)

∂x
− hD(x, t) , (1)

E(x, t) = −h
∂u(x, t)

∂x
+D(x, t)/ǫ , (2)

whereσ is the stress inN/m2, CD is Young’s modulus measured at constantD in N/m2, u is the

particle displacement inm, D is the electric flux density inC/m2, ǫ = ǫ0 ǫr is the dielectric

permittivity inF/m, ǫ0 is the permittivity of a vacuum inF/m, ǫr is the relative permittivity of

the medium,h is a piezoelectric constant measured at constantD in V/m, andE is the electric

field in V/m (orN/C). The piezoelectrically stiffened elastic constantCD, Eq. 1, is defined in

Cady15 (pg. 270 equation (271 a)), by The Institute of Radio Engineers (IRE)14 (pg. 1394, Table

III) or even Chen et al.1 (pg. 4760), and is given by

CD = CE + e h , (3)

whereCE is Young’s modulus measured at constantE , e is a piezoelectric coupling constant in

C/m2, andh = e/ǫ. In addition, from Newton’s second law,

ρ
∂2u(x, t)

∂t2
=

∂σ(x, t)

∂x
, for t > 0, x ∈ (−∞,∞) , (4)

whereρ is the mass density inkg/m3. Following the development in Redwood5 or Steutzer6 for
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linear piezoelectric media, substitution of Eq. 1 into Eq. 4gives

∂2u(x, t)

∂t2
=

CD

ρ

∂2u(x, t)

∂x2
−

h

ρ

∂D(x, t)

∂x
. (5)

If there is no free charge,ρfree = 0, inside the piezoelectric medium, thendiv D = ρfree = 0 (see

e.g., Lorrain and Corson,16 pg. 109), and the differentials with respect toy andz are assumed to

be zero (plane wave propagation in Cartesian coordinates),dDy/dx = dDz/dx = 0, hence

dDx/dx = 0, and Eq. 5 becomes

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
, (6)

wherec =
√

CD/ρ is the piezo-modified longitudinal wave speed withCD given by Eq. 3.

3. Impact-Induced Plane Waves in a Piezoelectric Target

We now consider the problem of a semi-infinite non-piezoelectric elastic flyer traveling at initial

velocityV0 that collides with (and welds to) a finite, undeformed, stationary piezoelectric target of

finite lengthl; the target is backed by a semi-infinite non-piezoelectric elastic half-space (Fig. 1).

Because our sign convention for stress is taken positive in compression, the stressσ1 in the linear

elastic piezoelectric target is given by Eq. 1 with the minussign:

σ1(x, t) = −CD
1

∂u1(x, t)

∂x
+ hD1(x, t) . (7)

We denote field quantities with a subscript of “1” as quantities in the piezoelectric target, and

subscripts of “0” and “h” refer to field variables in the flyer and half-space, respectively. From

Eq. 6 with this notation, the transient target displacementsu1(x, t) are governed by the wave

equation in one-spatial dimension,

∂2u1(x, t)

∂t2
= c 2

1

∂2u1(x, t)

∂x2
, for t > 0, x ∈ (0, l) . (8)

The general solution to the wave Eq. 8 in the target can be constructed using d’Alembert’s

equation:

u1(x, t) = f1(t− x/c1) + g1(t+ x/c1) , (9)

wheref1(·) andg1(·) are arbitrary functions. The displacementu1 is assumed to be continuous

3
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    target
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l
88

(t) = 0V1

Fig. 1. A semi-infinite non-piezoelectric elastic flyer (impedancez0) traveling at
initial velocity V0 impacting a piezoelectric target (impedancez1) of
lengthl; the short-circuited targetV1(t) = 0 is backed by a semi-infinite
non-piezoelectric elastic half-space (impedancezh).

and piecewise-smooth, which implies that the d’Alembert functionsf1 andg1 are also continuous

and piecewise-smooth. Lettingf ′

1 = F1 andg′1 = G1, then the d’Alembert solution 9, together

with the Eq. 7 for the stress, yields

σ1(x, t) = z1

[

F1(t− x/c1)−G1(t+ x/c1)
]

+ hD1(x, t) , (10)

wherez1 = ρ1c1 is the piezo-modified target impedance. Similarly, the particle velocityv1 in the

target is given by

v1(x, t) =
∂u1

∂t
= F1(t− x/c1) +G1(t+ x/c1) . (11)

It is evident that the stress and particle velocity in the target are determined once the functions

F1, G1, andD1 are determined. Note that discontinuities inF1 orG1 correspond to the passage of

shock waves at interior points or the reflection of shock waves at the boundariesx = 0 andx = l.

This behavior is independent of the back face boundary conditions, assuming the flyer welds to

the target at impact.

4



To solve forF1, G1, andD1 requires consideration of the initial conditions (in this case

homogeneous) and boundary conditions of the target. The initial conditions are

u1(x, 0) = 0 ,
∂u1(x, 0)

∂t
= v1(x, 0) = 0 , x ∈ [0, l] . (12)

Then Eq.121 and the stress-strain Eq.7 imply that

σ1(x, 0) = D1(x, 0) = 0 , x ∈ [0, l] . (13)

4. Laplace Transform of the D’Alembert Solution

Solutions for thetrue impact problem with appropriate back face boundary conditions are

obtained in this section by Laplace transform techniques. The derivation of these solutions require

the Laplace transform of the field equations, which is considered here. Letf denote a real-valued,

piecewise-continuous function defined at least on[0,∞). We employ the right-sided or unilateral

Laplace transformL of f defined as

f̄(s) = L{f}(s) = L t{f(t)}(s) ≡

∞
∫

0

f(t) e−stdt . (14)

Heres = σ + iω is generally a complex number withℜ(s) > 0, and the overbar onf indicates

that the function is in the Laplace domain. The Laplace transforms of field variables such as

u1(x, t), σ1(x, t) andv1(x, t) are taken with respect to the time variablet, for example,

σ̄1(x, s) = L t{σ1(x, t)}(s) =

∞
∫

0

σ1(x, t) e
−stdt . (15)

Applying Laplace’s shifting theorem, we see that

L t{F1(t + x/c1)} = e
sx

c1 F̄1(s) , L t{G1(t− x/c1)} = e
−sx

c1 Ḡ1(s) . (16)

Laplace transformation of Eqs. 9, 10, and11, and using Eq.16, we obtain Laplace-domain

expressions for the displacement, stress, and particle velocity in the target in terms of the
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transforms of the d’Alembert functions:

ū1(x, s) =
1

s

[

e
−sx

c1 F̄1(s) + e
sx

c1 Ḡ1(s)
]

, (17)

σ̄1(x, s) = z1

[

e
−sx

c1 F̄1(s)− e
sx

c1 Ḡ1(s)
]

+ hD̄1(s) , (18)

v̄1(x, s) =
[

e
−sx

c1 F̄1(s) + e
sx

c1 Ḡ1(s)
]

. (19)

To find the potential across the piezoelectric target of thickness,l, integrate the electric field

E1 = −∇V1. Unlike the gravitational field and other field potentials, the minus sign is used here

since the electric field is “governed by Coulomb’s law where elements of like sign repel,” cf.,

page 22 of Sternberg and Smith.17

V1(t) = −

l
∫

0

E1(x, t)dx . (20)

Substitution of Eq. 2 into Eq. 20 and specializing this to a “short-circuit” solution, where the

electrical impedance between the target impact face and back face is negligible (see Fig. 1),

results in

V1(t) = 0 = −h[u1(l, t)− u1(0, t)] + lD1(t)/ǫ , (21)

where the quantity in brackets
[

u1(l, t)− u1(0, t)
]

in Eq. 21 represents the relative motion of the

target surfaces. Taking the Laplace transform of Eq. 21 and substitution of Eq. 17 results in

V̄1(s) = 0 =
h

s

[

F̄1(s)(1− e
−sl

c1 ) + Ḡ1(s)(1− e
sl

c1 )
]

+ lD̄1(s)/ǫ . (22)

Three equations are required to find the three unknown functionsF̄1(s), Ḡ1(s), andD̄1(s). The

first is given by Eq. 21, the second is given by the boundary condition between the target and the

half-space derived elsewhere,11

σ1(l, t) = zhv1(l, t) , (23)

and the third equation is given by a newly derived11 impact boundary condition,

z0v1(0, t) + σ1(0, t) = z0V0 . (24)

Although not shown here, the elastodynamic impact boundaryconditions (Eqs. 23 and 24) are

also applicable to the piezoelectric impact problem for a homogeneous, elastic, and semi-infinite

flyer and half-space backing the target. Substitution of Eqs. 17 through 19 into the Laplace

transforms of Eqs. 21, 23, and 24 permits unique determination of functionsF̄1(s), Ḡ1(s), and
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D̄1(s). Substitution of these functions into Eqs. 18, 19, and 22 allows determination of the stress,

velocity, and displacement current by using numerical ILT algorithms. PZT-4 target mechanical

and electrical properties13 are given in Table 1. The elastic properties for the flyer and half-space

are identical and similar to that of a “non-piezoelectric” steel material.

Table 1. Mechanical and electrical properties.

Constant PZT-413 Steel

CE (GPa) 115.41 314.89

z0 = ρ0 c0 (kg m−2/s2) - 7850× 5110

z1 = ρ1 c1 (kg m−2/s2) 7500× 4533 -

zh = z0 (kg m−2/s2) - 7850× 5110

ǫ0 (farads/m) 8.854187817e-12 -

ǫr 663.2 -

ǫ = ǫ0 ǫr (farads/m) 5.87209736e-09 -

e (coul/m2) 15.08 -

h = e/ǫ (V/m) 2.5680773e+09 -

CD = CE + e h (GPa) 154.136 -

Solutions in the time domain are illustrated in Figs. 2, 3, and 4 and are found by numerical

inversion of the Laplace transform using the DAC algorithm,18 modified by Laverty and

Gazonas12 to mitigate the effects of Gibbs’ phenomenon using the so-called Lanczosσ-factors

with 2048 terms in the Fourier series and a tolerance equal to10−5. A general compiled

Mathematica code for the numerical inversion of functions with jump discontinuities appears in

the Appendix. The stress in the target in the Laplace domains is given by the function containing

the exponentials in Eq. A-1. This same code works equally well for continuous functions and

users need only replace the last expression in Eq. A-1 with their own Laplace-domain expression,

as well as listing the constants appearing in their expression at the beginning of theModule

command. Eq. A-2 computes the numerical ILT of the functionStressand stores these values in

the functionΣ. The Mathematica compile function executes this code in less than 8 s on a Dell

laptop with a 64-bit OS and 8 GB of RAM running on an Intel(R) Core(TM) i5 CPU, M 560 at

2.67 GHz. The same code executes in 135 s using uncompiled Mathematica code. Eq. A-3 plots

the normalized stressΣ at the center of the piezoelectric target (see Fig. A-1); thestress is

normalized by the initial elastic jump given by the expression sjump. Figs. 2, 3, and 4 also

illustrate solutions to the piezoelectric impact problem using a FDTD method and COMSOL

Multiphysics, a commercial FE code,13 both of which exhibit wave dispersion effects.

7
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target (PZT-4) backed by a semi-infinite non-piezoelectricelastic
half-space under impact by a semi-infinite non-piezoelectric elastic flyer
with initial velocity V0 = 5 m/s; the normalization factor is the initial
elastic stress jump at impact given byσ(0, 0+) = z0 z1E
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V0 wherez1E is

the “elastic-only” impedance of the target, and
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Fig. 3. Normalized velocity history at the center of a 5-mm-thick piezoelectric
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CE/ρ1, see Table 1.
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5. Discussion and Conclusions

The numerical solutions reveal the nearly instantaneous appearance of a tensile stress wave at the

center of the target, which increases linearly in amplitude(see Fig. 2), and is formed by the

E-field induced polarization of the material in the initiallyunstressed region of the target. For

nonlinear piezoelectric media, Chen et al.1 report that this wave cannot be a shock wave but must

be an acceleration wave since the wave speed depends upon a time-dependent displacement

currentD(t) (see Chen et al.1 equation (4.12)). The nearly instantaneous appearance of the stress

wave occurs since the speed of light is about five orders of magnitude greater than the

longitudinal wave speed in the target. The tensile stress wave is eventually overcome by the

impact-induced compressive stress wave at about 0.5µs. We are not aware of any other “true”

elastodynamic impact solutions in the literature, which correctly treat the occurrence of multiply

reflected transient waves in piezoelectric targets.

Numerical time-domain solutions of stress, velocity, and displacement current at the center of a

5-mm-thick PZT-4 target are obtained via a modified-DAC algorithm, and compare well with

those obtained using both a FDTD method and the commercial FEcode COMSOL

Multiphysics.13 Although not shown in this report, the final value theorem (FVT) can be used to

verify that the asymptotic (long-time) stress and velocityin the piezoelectric target are

independent of the target’s elastic or piezoelectric properties and only the elastic properties of the

flyer and half-space, a result also proven using the time-domain solutions obtained for purely

elastic targets.11 The FVT is also used to determine a closed-form expression for the asymptotic

displacement current,

D1(∞) = −
z0 zh h ǫ

(z0 + zh) (c1 z1 − h2ǫ)
V0 =

σ1(x,∞)
(

h− c1 z1
h ǫ

) , (25)

illustrated in Fig. 4, whereσ1(x,∞) is the asymptotic target stress.11
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Appendix. Mathematica Code for Determining the Numerical ILT Using the

Modified-DAC Algorithm

The following is the Mathematica19 code for determining the numerical inverse Laplace transform

(ILT) using the modified Dubner-Abate-Crump (DAC) algorithm.12 Figure A-1 shows the

normalized stress time history of the target.

Stress= Compile[{{s, _Complex}},Module[{l, x, eo, Ce, ers, ǫ2, ǫ, h,M, ρ, c1, V 0,

z0, z1, zh, a, b, c}, l = 5 ∗ 10−3; x = l/2; eo = 8.854187817 ∗ 10−12;Ce = 115.41 ∗ 109;

ers = 663.2; ǫ2 = 15.08; ǫ = eo ∗ ers; h = ǫ2/ǫ;M = Ce+ ǫ2 ∗ h; ρ = 7500;

c1 =

√

M

ρ
;V 0 = 5; z0 = 7850 ∗ 5110; z1 = ρ ∗ c1; zh = z0;

a =
(z0 − z1) (z1− zh)

(z0 + z1) (z1 + zh)
; b = z0 + 2z1 + zh; c =

z0 − 2z1 + zh

b
;

V 0z0e−
sx

c1

s

[

(

2z1e
s(l+x)

c1 + z1e
s(l+2x)

c1 + z1e
ls

c1 − (z1− zh)e
sx

c1

)

b
(

−e
2ls
c1 + 4z1e

ls
c1

b
+ c

)

+ (z0+z1)(z1+zh)
h2ǫ

ls
(

e
2ls
c1 + a

)

+

(

−e
s(2l+x)

c1 (z1 + zh)− z1e
2sx
c1

(

1 + ls (z1−zh)
h2ǫ

)

+ z1e
2ls
c1

(

ls (z1+zh)
h2ǫ

− 1
))

b
(

−e
2ls
c1 + 4z1e

ls
c1

b
+ c

)

+ (z0+z1)(z1+zh)
h2ǫ

ls
(

e
2ls
c1 + a

)

]

]] (A-1)
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Σ = Compile[{},Module[{sumcp, sumsp, tf, tol, a, tot, c0, τ, dt, σ, arg, coeffs,

cospart, c1, c2, sinpart, kpd, t, kpt}; tf = 5 ∗ 10−6; tol = 0.00001;

a = −
Log[tol]

2tf
; tot = 2048; c0 = Stress[a]; τ = 1000; dt =

tf

τ
;

Table[sumcp = 0.; sumsp = 0.;Do[kpd =
kπ

tot
; kpt =

kπ

tf
;

σ =
Sin[kpd]

kpd
; coeffs = Stress[a + i ∗ kpt]; c1 = Re[coeffs]; c2= Im[coeffs];

cospart = σc1Cos[t ∗ kpt]; sumcp = cospart+ sumcp;

sinpart = σc2Sin[t ∗ kpt]); sumsp = sinpart+ sumsp, {k, 1, tot}];

Exp[a ∗ t]( c0
2
+ sumcp− sumsp)

tf
, {t, dt, tf, dt}]],

CompilationOptions→ {"InlineExternalDefinitions“→ True,

"InlineCompiledFunctions“→ True}]; (A-2)

V 0 = 5; ρ = 7500; z0 = ρ ∗ 5110;Ce = 115.41 ∗ 109; zn =
√

ρ ∗ Ce;

sjump = V 0
z0zn

z0 + zn
; ListPlot [Σ[ ]/sjump, Joined→ True,

BaseStyle→ {FontFamily→ "Times“,FontSize→ 12},

PlotRange→ Full,DataRange→ {0, 5 ∗ 10−6},

AxesLabel→ {"Time (s)", ”
σ(l/2, t)

σ(0, 0)
“}] (A-3)
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Fig. A-1. Normalized stress time history at the center of a 5-mm-thick
piezoelectric target (PZT-4) backed by a semi-infinite non-piezoelectric
elastic half-space under impact by a semi-infinite non-piezoelectric
elastic flyer with initial velocityV0 = 5 m/s.
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